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Abstract: Urbanization has led to the need for the intelligent management of various urban challenges,
from traffic to energy. In this context, smart campuses and buildings emerge as microcosms of smart
cities, offering both opportunities and challenges in technology and communication integration. This
study sets itself apart by prioritizing sustainable, adaptable, and reusable solutions through an open-
source framework and open data protocols. We utilized the Internet of Things (IoT) and cost-effective
sensors to capture real-time data for three different use cases: real-time monitoring of visitor counts,
room and parking occupancy, and the collection of environment and climate data. Our analysis
revealed that the implementation of the utilized hardware and software combination significantly
improved the implementation of open smart campus systems, providing a usable visitor information
system for students. Moreover, our focus on data privacy and technological versatility offers valuable
insights into real-world applicability and limitations. This study contributes a novel framework that
not only drives technological advancements but is also readily adaptable, improvable, and reusable
across diverse settings, thereby showcasing the untapped potential of smart, sustainable systems.
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1. Introduction

The process of urbanization leads to significant population concentrations in expand-
ing metropolitan areas. This requires the intelligent management of issues such as traffic
and mobility, pollution, energy, waste, and security. Given this background, a smart cam-
pus or a smart building can thus be conceptualized as a small-scale version or microcosms
of smart cities, which bring both new opportunities and challenges in terms of technology
and communication integration [1]. However, this is only a context-related umbrella term.

In a comprehensive literature review, [2] did not find a universal definition for a smart
campus, and therefore drew attention to the specific contextual nature of this concept. As
such, although developments must be interpreted with a keen understanding of the unique
needs, resources, and circumstances of each setting, intelligent systems should, in our
understanding, be designed and implemented with sustainable transferability in mind.

Smart management systems are particularly relevant for public buildings. These insti-
tutions not only have a responsibility to exemplify sustainable development, but they must
also exert a positive impact on the cities and regions in which they are situated. In recent
years, the digitalization trend has accelerated the importance of such smart building sys-
tems. On a campus, buildings are part of the physical infrastructure. Among other things,
the systems aim to improve or simplify building operations and user experience through
the integration and use of the Internet of Things (IoT) and its connected sensors [3,4].

In this context, information such as real-time crowd counts, movement flows, or air
quality at indoor or outdoor events has gained unprecedented relevance due to the COVID-
19 pandemic. In order to enforce and comply with hygiene protocols, it will be necessary to
implement measures that further monitor current visitor numbers and movements inside
and outside buildings [5–9].
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In particular, the application of low-cost sensor technology can facilitate the cost-
effective collection of diverse data and information. This includes climatic data such as
temperature, air quality, or humidity [10,11], as well as people, vehicle, and environmental
data such as light or noise levels [12,13]. Some of the most common applications for smart
building or campus systems include visitor, space, energy, or parking management [4,14,15].
Such systems provide operators with enhanced event-scheduling capabilities and help
manage resources. For visitors, these potential systems provide relevant information about
location, available resources, and facility occupancy.

However, the development of these smart building or campus systems is not with-
out challenges, including privacy issues, security risks, and technical difficulties [16,17].
For larger building complexes, monitoring visitors at building entrances is insufficient
to provide meaningful information about visitor distribution. The implementation of
comprehensive camera surveillance is often considered inefficient due to high technical
requirements, acceptance issues, and potential violations of personal rights [18,19].

In this paper, we demonstrate the prototyping of a smart campus system using IoT
based on low-cost sensor technology, open source software, and openly documented hard-
ware components. Unlike other studies that generally focus on detecting and measuring
specific variables for a smart building or campus system [14,20,21], we test and evaluate
various methods to represent different use cases. These include real-time monitoring of
visitor counts, room and parking occupancy, and collection of environmental and climate
data. We prioritize sustainability and reusability of the overall system, focusing on open
and standardized communication using established standards and interfaces from the
geoinformatics domain. This approach facilitates data provision and the visualization of
the collected data by the subsystems.

2. Related Work

Sensors for capturing different types of information are utilized across numerous areas.
The internet-based access and provision of this data consequently create a network with a
wide range of sensors. The emerging IoT thereby provides an architecture and infrastructure
that enables many applications across various areas, such as Smart City Environment [3],
Smart Home [22], Smart Campus [23], and Smart Traffic Systems [24]. Characteristics
of the IoT architecture include standardized interfaces and protocols, as well as being
open, scalable, and flexible. It can generally consist of an application, network/service,
and sensor layer [25]. The integration and use of artificial intelligence in this context is
becoming increasingly significant [12,16,26].

Overall there exist various methods to determine the real-time count of individuals
or visitors at a specific location within a building (e.g., entrance), room, or area (e.g., re-
stroom, hallway) using IoT. At its simplest, PIR sensors (passive infrared light) or motion
detectors can be employed for room occupancy or person counting [27,28]. This requires
enough motion detectors and is often used in a basic configuration to detect activity or
identify room occupancy. In addition, there exist high-precision infrared array sensors
which, depending on the surrounding temperature, can provide an accuracy of up to
90% in visitor counting [29]. Bluetooth (BLE) and Wireless Local Area Network (WLAN)
technologies or networks are often employed to determine visitor count or room/building
occupancy [30–32]. Here, data packets (broadcast messages) sent by smartphones, laptops,
tablets, and wearables are used. The received signal strength indicator (RSSI), which plays
a vital role in the captured communication of surrounding devices, can infer the distance
between the sender and receiver. The authors of [33] have demonstrated that this is in
principle useful for maintaining safety distances. In combination, BLE and WLAN can also
be used to locate individuals [34–36]. In addition, camera-based detection of individuals
and the subsequent counting have already confirmed good-to-excellent results in many
demonstrated applications, with an accuracy of over 90% [37,38]. In the studies, cameras
were either placed above a door or passageway in a top-down view [39] or in a slightly
tilted position for better detection of the head and shoulder area [40,41]. In these latter
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studies, computer vision-based approaches are typically used to recognize people, track
them, and thereby determine visitors. The methods rely on neural networks, blob detec-
tion, or Histograms of Oriented Gradients (HOG) and Local Binary Patterns (LBPs) for
person detection [40]. The accuracy of these systems may strongly depend on the amount
of training of the neural network and the selection of the features [42]. In addition to
self-created and trained models, object detection systems or algorithms such as the “You
Only Look Once” (YOLO) algorithm [43] or further optimized approaches like YOLO-based
People Counting [44] are suitable. Furthermore, it is possible to detect individuals using
Time-of-Flight (ToF) sensors [45], and to track them [46]. Variants using a sensor array
system integrated into the floor (carpet) are also possible [47].

Additionally, the application of IoT within the context of individual transportation
is not a new concept. It can be utilized for smart parking within buildings [48], in smart
traffic management Systems [49], in the field of autonomous driving [50], or for monitoring
the current traffic volume [51]. Different sensors are suitable for measuring traffic. These
may include point magnetic sensors or induction loops in the roadway [52], GPS sensors
and Radio Frequency Identification (RFID) tags in vehicles [53], or camera-based methods,
for instance, for controlling traffic lights at an intersection [54], or for measuring the flow of
traffic. The authors of [55] demonstrated what a computer vision system for real-time traffic
measurement might look like. In addition to the approach of capturing traffic based on blob
or contour recognition, they also examined a feature-based approach. The latter was also
employed by [56] to identify vehicles using the OpenCV library and thereby determine the
traffic volume. OpenCV is a free and extensive library in the field of computer vision and
machine learning [57]. There are several studies that demonstrate its use in measuring traffic
flow of vehicles [56,58,59], bicycles, or people [60–62]. For object detection to determine
traffic, the YOLO algorithm, which is available in various versions, is also often used [63].
Depending on the application, there are special versions for real-time detection of different
road users [62,64–66].

3. Towards an Open Smart Campus Monitoring and Information System

The developed Open Smart Campus System consists of various components. has been
developed as a prototype at the Mainz University of Applied Sciences campus and put
into operation for a test period [67]. The university has a total of four locations, with the
prototype presented here implemented and tested on the main campus site.

3.1. Architecture of the Prototype System

The system basically consists of three components: Client, Web Service(s), and Sen-
sors. Figure 1 shows the architecture of the prototype with its individual components. In
addition to the various sensors (left) for each use case, it also includes the controller layer
of the building’s Wi-Fi of the Mainz University of Applied Sciences, which can provide
information about connected and logged-in devices per access point. The transmission of
the readings from the individual sensors and their data storage is carried out via the Open
Geospatial Consortium (OGC) SensorThings API [68] (center of Figure 1). The Fraunhofer
IOSB’s freely available FROST server is used as an implementation of the standard, con-
necting the various sensors in a star network topology to the central processing server [69].
A web dashboard displays the measured values and provides access to additional analysis
results and forecasts for different user groups (e.g., university management or students
navigating the building). The background maps of the buildings, floors, or rooms required
in the web dashboard are integrated in accordance with the OGC Web Map Service [70]
and OGC Web Feature Service [71] specifications. The freely available GeoServer [72] from
the nonprofit Open Source Geospatial Foundation organization (OSGeo) is used as the
implementation. The geodata used are partly taken from the OpenStreetMap project [73]
and have also been extended by the floor plans of the Mainz University of Applied Sciences.
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Figure 1. Architecture of the Open Smart Campus System.

The information system is also designed to generate the information necessary to
make future predictions about the number and distribution of visitors, the flow of people,
and the use of space and parking. The model applied for this purpose was presented by [74]
and is expected to be implemented in a forecast module in the future. The intention is to
establish a process via the OGC Web Processing Specification [75] that recognizes patterns
from the input data using trained machine learning methods to infer from the current
building occupancy to the future building utilization.

3.2. Low-Cost Sensors for the Use Cases

Depending on the implementation of the measurement method for each of the men-
tioned use cases in this article, the use of Single-Board Computers (SBC) such as Raspberry
Pi Zero 2, Model 3, or 4 is suitable, as in other studies [14,19,76], due to reasonable hardware
costs. The approximate cost for setting up a single room with the proposed sensor tech-
nology is around $100 to $150, depending on the specific sensors and SBC models chosen.
This is significantly less expensive than commercial smart building solutions, which can
cost upwards of $1000 per room for similar functionalities.

To provide a comprehensive overview of the sensors used in this study, Table 1
summarizes their key specifications [77–79].

Table 1. Overview of the sensors and devices used.

Component Functionality Interface Voltage Power
Consumption Accuracy

BME280 Humidity and Pressure GPIO/Enviro+ 1.7–3.6 V 3.6 µA ±3%
DHT11 Temperature and Humidity GPIO 3.3–5 V 2.5 mA ±2 ◦C

Evo Mini Infrared ToF USB 5 V 50 mA ±1.5 cm
Evo People Counter Infrared ToF USB 5 V 50 mA ±1.5 cm

LTR-559 Light and Proximity GPIO/Enviro+ 2.4–3.6 V 20 mA N/A
MiCS-6814 Gas Sensor GPIO/Enviro+ 1.7–2.4 V 32 mA N/A
PIR Sensor Motion Detection GPIO 3.3–5 V 0.8 W N/A

Pi Camera V2 Camera CSI 3.3 V 250 mA 8 MP
SPH0645LM4H-B Digital Microphone GPIO/Enviro+ 1.6–3.6 V 600 µA N/A

Tapo C110 Home Security Camera WiFi 5 V 300 mA 3 MP
MQ-2 Gas/Smoke Detection Analog/GPIO 5 V N/A N/A

MH-Z19 CO2 Measurement UART/PWM 3.6–5.5 V 18–33 mA ±(50 ppm + 5%)

As shown in Table 1, these SBCs are already equipped with various low-cost sensors
or can be extended with these through USB, a Camera Serial Interface (CSI), or a General-
Purpose-Input/Output interface (GPIO). In this study, a Raspberry Pi Zero 2 or a Raspberry
Pi 4 Model B with 8 GB RAM was used with its pre-installed WLAN and BLE modules and,
if necessary, an additional WLAN module as sensors. A Raspberry Pi Camera V2 and a
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Tapo C110 home security WLAN camera were also utilized. To measure environmental
and climate information, a DHT11/DHT22 was used for temperature/humidity, an MQ-2
for gas/smoke, and an MH-Z19 sensor for CO2. As an alternative, a Raspberry Pi HAT
like the Enviro+ was used. This allows the measurement of air quality (harmful gases and
particles), temperature, pressure, humidity, light and noise levels.

To implement the use case of estimating the number of people and room occupancy
in the Smart Campus System, different methods were tested and evaluated. When a
smartphone, smartwatch, laptop, tablet, etc. with a BLE interface is turned on, the device
periodically sends broadcast messages to all nearby devices. Bluetooth has a theoretical
range of up to 100 m outdoors and up to 20 m inside a building with walls. If the broadcast
messages sent in the environment are collected by an SBC with a Bluetooth interface using
discoverable mode, relevant metadata such as MAC address and RSSI can be further
analyzed, and conclusions about at least the number of devices in the vicinity can be
calculated. However, the number of devices does not necessarily correlate with the number
of people, as they may be carrying multiple devices.

Similarly, modern electronic devices have a WLAN interface. If it is turned on, broad-
cast messages are sent periodically. To be able to receive such data packets, a WLAN
module must support the so-called monitor mode. The Raspberry Pi’s built-in WLAN
module supports this, but the operating system (Raspberry Pi OS) does not. For this reason,
a second WLAN module is used via the USB interface, and the built-in WLAN module
comes into action for communication with the data storage layer. The range of WLAN
devices can ideally be several hundred meters outdoors and between 30 and 40 m inside a
building, although the range is always dependent on the hardware and frequency used.
Aircrack was used to continuously record the data traffic and the associated devices in the
vicinity with their MAC address and their RSSI as a so-called packet sniffer. In addition,
as mentioned, the existing WLAN on campus was used. At Mainz University of Applied
Sciences, just over 180 access points are available for indoor and outdoor use. The access
points used are Aruba7030 Mobility Controllers [80]. This model provides an API, which,
among other things, returns the devices in the vicinity (connected and unconnected).

Time-of-Flight (ToF) sensors can be used to measure distances using the runtime
method, which can also be used to estimate the number of people passing by an installed
sensor. Depending on the sensor used, different numbers of pixels are available. In the
development of the system presented here, the TeraRanger Evo Mini from TeraBee was used.
This can measure distances between 3 and 330 cm with a field of view of 27 degrees [81].
The sensor can be configured in either a single or multi-pixel and short or long measurement
mode. It was connected to the SBC via USB. In addition to the Evo Mini, the Evo People
Counter from TeraBee was also examined. The shape and technical specifications of the
Evo People Counter is identical to the Evo Mini. Figure 2 shows the EvoMini and Evo
People Counter sensor (a), and the mounting options of the sensor from above (b) or on a
wall (c). The Evo People Counter offers a direct interface for measuring or retrieving the
recorded visitor frequency from the sensor for all common operating systems. A potential
detection range of 5 to 150 cm in the area of a door or corridor is specified for this [82].
A custom Python 2.7 script is used as software. With the Evo Mini, an algorithm must
be implemented to detect the movement and direction of a person from the measured
distances. However, the manufacturer offers some examples on GitHub that simplify the
implementation [83].

As mentioned, image processing can be used to detect objects such as people or
vehicles and track their movement using approaches with neural networks, blob detection
methods, HOG-LBP, or YOLO. Both are applied in the use case for determining the number
of visitors and parking space occupancy. For this study, two low-cost cameras were selected.
The Raspberry Pi camera module 8MP v2 can be connected directly to the SBC via the
existing CSI. For static images, a resolution of 3280 × 2464 pixels is possible. Videos are
supported in 1080 p with 30 frames per second (FPS) while the field of view is 62 degrees.
The Tapo C110 home security Wi-Fi camera was used as a second camera. Via a Wi-Fi
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connection, it delivers a video stream with a resolution of up to 2304 × 1296 pixels at up
to 30 FPS and a field of view of 105 degrees. A self-implemented Python script is used
as software, utilizing OpenCV [84] and a MobileNet Single Shot Detector (SSD) or the
YOLO method for deep learning-based object detection. The object tracking required for
determining visitor frequency and measuring parking space entry/exit or occupancy is
centroid based. Comparable approaches can be found on GitHub and other sites [85].
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The collection and storage of environmental and climate information is significantly
simpler compared to the methods previously mentioned. Using available Python scripts,
readings are retrieved for the desired sensors and processed accordingly. For example,
they can be sent to the OGC SensorThings API used for storage or, if desired, they can be
processed for direct verification and possible notification if a threshold is exceeded.

Although the system is designed for efficient data transmission, the possibility of
packet loss during communication between the sensors and devices cannot be entirely
ruled out. Factors such as network congestion, interference, and signal degradation could
potentially result in packet loss. Particularly, BLE operates in the often congested 2.4 GHz
frequency band. This band is shared by numerous devices and technologies, leading to
potential interference and collisions. As highlighted in previous experiments [86–88], BLE
and Wi-Fi can experience challenges in providing real-time and reliable service for time-
critical applications due to packet loss and collisions, especially when multiple connections
are involved. Such issues can be exacerbated in scenarios with numerous devices operating
simultaneously, leading to increased chances of packet collisions and subsequent data loss.
However, for our specific application, real-time transmission is not a primary concern.
Our system is designed to use data points in 5 min time windows, which increases the
time frame for successful data transmission. This design choice inherently reduces the
impact of transient packet loss or temporary network congestion. By spacing out our
data transmissions, we can ensure a higher degree of reliability and reduce the potential
for packet collisions, making the system more resilient to the challenges commonly
associated with BLE in crowded frequency bands. Furthermore, the system employs a
retransmission mechanism, where the sensors will attempt to resend the data packet if
an acknowledgement is not received within a specified time frame. Additionally, the
system handles occasional packet loss gracefully, ensuring that minor disruptions do
not significantly impact the overall performance and reliability by interpolating single
missing data points.

3.3. Web Dashboard

The measurements collected by the various sensors and their analysis results are
combined in a web dashboard for the users (e.g., university management or students
navigating the building). This dashboard is built on a Single Page Application (SPA) model
using JavaScript, utilizing the React library for better user interface and responsiveness
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and Leaflet as a central map component. Custom Webpack configurations allow for a
modular design, making the dashboard adaptable for both development and production
environments. Real-time data updates are facilitated through the WebSocket protocol to
fetch current data from the central FROST server, which gathers the readings of the various
connected sensors on the SBC [89–91]. The basis for visualization is a map with the rooms
of the Mainz University of Applied Sciences campus, or more precisely, Its main building,
which consists of almost 450 rooms (including offices, toilets, staircases, storage rooms,
etc.) spread over four floors. The focus of the developed Smart Campus System was on
the approx. 50 lecture halls, 8 PC pools, and 7 labs at the location. Figure 3 shows the
main building of the University and the official parking spaces for students, staff, and
visitors. The individual colored points visualize the main entrance, the cafeteria, the
location of the camera for parking management, and the lecture halls used in the test
and evaluation phase.
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Unlike existing systems, the developed dashboard can display not only static but also
real-time and historical information for the rooms. In addition to the number of people
currently in the buildings (or floors or rooms), alternative visualizations of flows or hot
spots of people in the building are also possible. Students, faculty, and visitors can thus
obtain information about building or room occupancy in advance or, if necessary, be
automatically notified in case of exceeding the maximum number of people or other
events, provided integration with the existing systems is in place. Figure 4 shows the
developed web dashboard with the map and a color scale of room occupancy on campus.
In addition, the current and past occupancy for the selected room is illustrated in detail
as an example.
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4. Low-Cost Sensors Used: Insights and Experiments

The various field tests on the measurement procedures of the presented use cases
took place in the context of seven different courses, each in the summer semester 2022 and
winter semester 2022/2023. The courses were held in the form of lectures, exercises, exams,
and colloquia at the Department of Engineering and the Department of Geoinformatics
and Surveying in different semesters and weeks of the lecture period. Group sizes ranged
from 12 to 40 students, and the subjects were informed about the experiments and trials,
but not about the exact measurement procedures until later.

Figure 5 provides a visual representation of the devices utilized in our study. On the
left are the TeraRanger Evo Mini sensors connected to a Raspberry Pi 4 in a protective case.
Adjacent, on the right, is a power bank ensuring flexible placement and uninterrupted
power supply to the sensors and emphasizing the system’s mobility and adaptability. On
the upper right stands the Tapo C110 camera, and on the bottom right are two Raspberry Pi
4 devices, one equipped with the Enviro+ sensor suite and the other one with the PiCamera
V2. All three Raspberry Pis are also connected to a separate Wi-Fi dongle, enabling the
parallel use of the monitor mode while transferring data.

Visitors to a lecture hall were counted as they entered, stayed, and left. The lecture
halls used had the rectangular floor plan shown in Figure 6 and always had an entrance
door. The SBC with the WLAN & BLE module and the environmental climate sensors was
positioned in the center of the room (see Figure 6a). The camera facing into the lecture room
was mounted above the door and the ToF sensor near the door frame (see Figure 6b,c).

As confirmed by many published studies, the image/video-based sensor yielded the
best results through the evaluation of the camera with an average accuracy of over 90%
for the events tested. The worst results were obtained with the ToF sensors. Here, the
number of visitors could only be determined with an average accuracy of 40%. In our
first experiments, interesting measurements were also obtained with the WLAN and BLE
sensors. The captured BLE devices and the number of people had a correlation coefficient r
of 0.82. Compared to previous published studies, this value has a significant effect for BLE
devices; Ref. [92] concluded in their experiments using BLE that only 11% of people had a
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BLE device with them. Furthermore, Ref. [13] also mention that the number of BLE devices
would be negligible compared to WLAN devices when counting people in the vicinity. This
could not be confirmed in the tests conducted here. Figure 7 shows the number of detected
WLAN and BLE devices and the manually counted number of people in the respective
event room. In Figure 7, for the study of WLAN devices, two outliers at 55 and 70 people
can be seen. These two measurements come from a kick-off event in the first week of the
lecture period.
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Due to the insufficient quality of the results of the ToF sensors for use in a visitor
information system, this method was not pursued further. The approach to measure visitor
frequency through image evaluation on a large scale is concerning from the perspective
of data privacy and was therefore also not pursued further in the use case at the Mainz
University of Applied Sciences campus.

For the use case of parking lot management with information about the number
of occupied and free parking spaces, a camera was installed around the entrance to the
parking lot, as shown in Figure 3. The ongoing traffic in and out of the parking lot area was
evaluated using a script via the live stream that is thus available (see Figure 8). The line
marked in yellow in the image is used to distinguish the direction of travel.
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5. Challenges and Lessons Learned

The results in the various testing of the respective use cases show that the accuracy of
the results can vary depending on the selected method and the choice of sensors. For the
determination or estimation of the number of visitors or the frequency of visitors, the used
ToF sensors required special care when being mounted and aligned. The manufacturer
provides appropriate recommendations for this. Likewise, the manufacturer also points
out that the sensors can only count individual people. If several people pass the sensor
close together, they are counted as one visitor. The testing in the lecture rooms showed that
students often walked past the sensor in small groups, which is why there were differences
in the number of counted and actual visitors. Therefore, if there are less frequented passages
or areas, the investigated ToF sensor might also be suitable.

The good or very good results in visitor counting using the camera-created images
or video stream evaluation were already known due to numerous studies. However, the
hardware and software used in this article underpin the fact that corresponding results can
also be achieved with low-cost cameras and open-source software. As already mentioned
in this and other studies, complete video surveillance is, however, a cause for concern
from a data privacy point of view and is not sought after in the information system at the
campus in Mainz.

The use of BLE and WLAN sensors again showed that these two sensors or methods
are well suited for detecting the number of devices, estimating the number of people by
correlation, and using them in an information system, at least in comparison to other studies.
In the approach shown here, the threshold value for filtering the detected RSSI values had
to be adjusted individually for both methods, depending on the room, because otherwise,
too many devices would be found and, thus, no meaningful correlation between detected
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devices in the environment and people could be calculated. Rooms around the cafeteria or
the main entrance, for example, posed greater difficulties (see Figure 3) because of the high
flow of visitors. Nevertheless, there is further potential; for example, the number of packets
exchanged during communication between the sensor and devices in the environment
could also be recorded and considered when determining the number of visitors. From a
privacy point of view, however, this should be done directly in the sensor itself and without
persistence of this data.

There is also a difference between indoor and outdoor use of BLE and WLAN signals.
The signals behave differently due to walls and materials in the environment, although the
tests in this article only took place in lecture rooms and thus, indoors. Isolated outdoor
tests nevertheless showed tendencies that results with similar accuracy can be achieved,
assuming an adequate calibration as described.

In the parking management use case, vehicles were detected via the YOLO algorithm,
which was also used in further processing. In various preliminary tests, YOLO was one of
the fastest in object detection compared to other approaches. However, it is possible that
another approach is better suited for the evaluation of video streams from web cameras, for
example. This should be examined depending on the image source and format. Another
issue that has not yet been investigated is the influence of weather. Our experiments took
place in summer, which means that difficult lighting conditions, for example, played a
minor role for the time periods relevant to us.

6. Conclusions and Future Work

To ensure the sustainability of the presented smart campus system and components
from a technological perspective, the implementation was carried out using open-source
software, open data, and open standards and data formats. The result is a prototype for
a modular and open-source system that can be reused and adapted by other universities,
small and medium-sized enterprises, or public institutions. Technological transferability is
thus comparatively easily enabled, and parts such as the involved low-cost sensors can be
used or individually adapted.

The prototypical information system we developed and applied on the campus of the
Mainz University of Applied Sciences indicates that low-cost sensors can provide reliable
data for real-time analytics and decision-making systems for various users, from students to
facility managers. Specifically, the image/video-based sensor yielded an average accuracy
of over 90% for visitor counting, whereas the BLE devices showed a significant correlation
coefficient r of 0.82 with the number of people present. This is particularly significant given
data privacy considerations included in our research, areas that are often not given due
attention [93].

These metrics affirm that the examined low-cost sensors could provide good-to-very
good results, as reflected in the consistent data obtained in multiple iterations. The intrinsic
validity of these results is derived from comprehensive evaluations, as the experiments were
conducted in seven different courses during both the summer and winter semesters of 2022
and 2022/2023. The choice of different academic settings and the heterogeneous nature of
the group sizes, ranging from 12 to 40 participants, provided a diverse sample, facilitating
more general and reliable inferences about the efficacy of the sensors. Nevertheless, it must
be emphasized that the robustness and validity of these results can only be confirmed by
comparative analyses with analogous experimental setups.

Furthermore, our research adds a new layer to the ongoing discussion about the
increasing prevalence of sensors and IoT devices in the smart campus context. It points out
the need for open systems that can be scaled up as technology evolves. In this context, the
transition to an integrated digital building or campus will rely heavily on information and
communication technology (ICT) and IoT infrastructures [94,95]. Depending on the struc-
tural conditions or the existing infrastructure, our study suggests that smart technologies,
when integrated effectively into existent facilities, can contribute to improved services and
decision-making processes [96–98].
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For future research and as mentioned above regarding the results, it would be relevant
to test the adaptability of our framework to different environments and conditions. Overall,
the work adds a practical perspective to the current landscape of smart technology integra-
tion in public and educational settings, emphasizing the role of open-source systems and
data privacy.
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64. Ćorović, A.; Ilić, V.; Ðurić, S.; Marijan, M.; Pavković, B. The real-time detection of traffic participants using YOLO algorithm. In
Proceedings of the 26th Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018.

65. Lan, W.; Dang, J.; Wang, Y.; Wang, S. Pedestrian detection based on YOLO network model. In Proceedings of the IEEE International
Conference on Mechatronics and Automation (ICMA), Changchun, China, 5–8 August 2018.

66. Sang, J.; Wu, Z.; Guo, P.; Hu, H.; Xiang, H.; Zhang, Q.; Cai, B. An improved YOLOv2 for vehicle detection. Sensors 2018, 18, 4272.
[CrossRef]

67. Visca, D.; Hoppe, M.; Neis, P. Developing a Sustainable and Transferable Visitor Information System 2.0 with the Internet of
Things—A Prototype. In Proceedings of the SMART ACCESSIBILITY 2023: Assistive Applications in Internet of Things Scenarios,
Venice, Italy, 24–28 April 2023.

68. Open Geospatial Consortium SensorThings API Part 1: Sensing Implementation Standard Version: 1.0. Available online:
https://www.ogc.org/standard/sensorthings/ (accessed on 17 August 2023).

https://doi.org/10.1177/0361198105191700119
https://doi.org/10.1214/07-STS238
https://doi.org/10.1080/15472450.2013.771105
https://doi.org/10.12720/joace.1.4.349-352
https://doi.org/10.1016/j.trc.2015.04.003
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.3390/s18124272
https://www.ogc.org/standard/sensorthings/


Sensors 2023, 23, 8652 15 of 16

69. Santhanavanich, T.; Coors, V. CityThings: An integration of the dynamic sensor data to the 3D city model. Environ. Plan. B Urban
Anal. City Sci. 2021, 48, 417–432. [CrossRef]

70. Open Geospatial Consortium Web Map Service (WMS) Implementation Specification Version 1.3.0. Available online: https:
//www.ogc.org/standard/wms/ (accessed on 17 August 2023).

71. Open Geospatial Consortium Web Feature Service 2.0 Interface Standard Version 2.0.0. Available online: https://www.ogc.org/
standard/wfs/ (accessed on 17 August 2023).

72. Henderson, C. Mastering GeoServer; Packt Publishing Ltd.: Birmingham, UK, 2014.
73. Neis, P.; Zielstra, D. Recent developments and future trends in volunteered geographic information research: The case of

OpenStreetMap. Future Internet 2014, 6, 76–106. [CrossRef]
74. Roussel, C.; Böhm, K.; Neis, P. Sensor Fusion for Occupancy Estimation: A Study Using Multiple Lecture Rooms in a Complex

Building. Mach. Learn. Knowl. Extr. 2022, 4, 803–813. [CrossRef]
75. Open Geospatial Consortium WPS 2.0 Interface Standard Version 2.0.2. Available online: https://www.ogc.org/standard/wps/

(accessed on 17 August 2023).
76. Chang, K.-M.; Dzeng, R.-J.; Wu, Y.-J. An Automated IoT Visualization BIM Platform for Decision Support in Facilities Management.

Appl. Sci. 2018, 8, 1086. [CrossRef]
77. Álvarez, J.L.; Mozo, J.D.; Durán, E. Analysis of single board architectures integrating sensors technologies. Sensors 2021, 21, 6303.

[CrossRef] [PubMed]
78. Jolles, J.W. Broad-scale applications of the Raspberry Pi: A review and guide for biologists. Methods Ecol. Evol. 2021, 12, 1562–1579.

[CrossRef]
79. Raspberry Pi: Products. Available online: https://www.raspberrypi.com/products/ (accessed on 17 August 2023).
80. Hewlett Packard Enterprise Development LP. Aruba 7000 Series Mobility Controllers. 2022. Available online: https://www.

arubanetworks.com/assets/ds/DS_7000Series.pdf (accessed on 17 August 2023).
81. TeraRanger Evo Mini: Single and Multi-Pixel Capability in 1 Sensor—0.03 m to 3.3 m Range, 9 Grams. Available online:

https://www.terabee.com/shop/3d-tof-cameras/teraranger-evo-mini/ (accessed on 17 August 2023).
82. TeraRanger Evo People Counter: Small, Compact and Easy-to-Integrate Bidirectional People Traffic Counter. Available online:

https://www.terabee.com/shop/people-counting/teraranger-evo-people-counter/ (accessed on 17 August 2023).
83. Terabee Github: Ros Nodes for Single TeraRanger Sensors. Available online: https://github.com/Terabee/teraranger (accessed

on 17 August 2023).
84. OpenCV Provides a Real-Time Optimized Computer Vision Library, Tools, and Hardware. Available online: https://opencv.org/

(accessed on 17 August 2023).
85. Pyimagesearch—OpenCV People Counter. Available online: https://pyimagesearch.com/2018/08/13/opencv-people-counter/

(accessed on 17 August 2023).
86. Rondón, R.; Gidlund, M.; Landernäs, K. Evaluation Bluetooth Low Energy suitability for time-critical industrial IoT applications.

Int. J. Wirel. Inf. Netw. 2017, 24, 278–290. [CrossRef]
87. Park, E.; Kim, H.-S.; Bahk, S. BLEX: Flexible Multi-Connection Scheduling for Bluetooth Low Energy. Proc. ACM IPSN 2021,

268–282. [CrossRef]
88. Silva, C.A.G.D.; Pedroso, C.M. MAC-Layer Packet Loss Models for Wi-Fi Networks: A Survey. IEEE Access 2019, 7, 180512–180531.

[CrossRef]
89. Smart, G. Practical Python Programming for IoT: Build Advanced IoT Projects Using a Raspberry Pi 4, MQTT, RESTful APIs, WebSockets,

and Python 3; Packt Publishing Ltd.: Birmingham, UK, 2020.
90. Ovcharuk, I.; Horbenko, O. Single Page Application for Weather Tracking App. Digit. Platf. Inf. Technol. Sociocult. Sphere 2021, 4,

127–135. [CrossRef]
91. Pavic, F.; Brkic, L. Methods of Improving and Optimizing React Web-applications. In Proceedings of the 44th International

Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 27 September 2021–1 October
2021; pp. 1753–1758. [CrossRef]

92. Versichele, M.; Neutens, T.; Delafontaine, M.; de Weghe, N.V. The use of Bluetooth for analysing spatiotemporal dynamics of
human movement at mass events: A case study of the Ghent Festivities. Appl. Geogr. 2012, 32, 208–220. [CrossRef]

93. Cheong, P.H.; Nyaupane, P. Smart campus communication, Internet of Things, and data governance: Understanding student
tensions and imaginaries. Big Data Soc. 2022, 9. [CrossRef]

94. Martínez, I.; Zalba, B.; Trillo-Lado, R.; Blanco, T.; Cambra, D.; Casas, R. Internet of Things (IoT) as Sustainable Development
Goals (SDG) Enabling Technology towards Smart Readiness Indicators (SRI) for University Buildings. Sustainability 2021, 13, 7647.
[CrossRef]

95. Hazarika, A.; Ajay, K.D.K.; Subash, N.; Srinivasa Yeshwanth, G.; Raju, L.; Kushal Swarup, P.; Kasuar, S.; Antony, A. A Survey
Towards Implementing Smart Campus. In Intelligent Manufacturing and Energy Sustainability: Proceedings of ICIMES; Springer:
Singapore, 2022; pp. 55–61. [CrossRef]

96. Min-Allah, N.; Alrashed, S. Smart campus—A sketch. Sustain. Cities Soc. 2020, 59, 102231. [CrossRef] [PubMed]

https://doi.org/10.1177/2399808320983000
https://www.ogc.org/standard/wms/
https://www.ogc.org/standard/wms/
https://www.ogc.org/standard/wfs/
https://www.ogc.org/standard/wfs/
https://doi.org/10.3390/fi6010076
https://doi.org/10.3390/make4030039
https://www.ogc.org/standard/wps/
https://doi.org/10.3390/app8071086
https://doi.org/10.3390/s21186303
https://www.ncbi.nlm.nih.gov/pubmed/34577510
https://doi.org/10.1111/2041-210X.13652
https://www.raspberrypi.com/products/
https://www.arubanetworks.com/assets/ds/DS_7000Series.pdf
https://www.arubanetworks.com/assets/ds/DS_7000Series.pdf
https://www.terabee.com/shop/3d-tof-cameras/teraranger-evo-mini/
https://www.terabee.com/shop/people-counting/teraranger-evo-people-counter/
https://github.com/Terabee/teraranger
https://opencv.org/
https://pyimagesearch.com/2018/08/13/opencv-people-counter/
https://doi.org/10.1007/s10776-017-0357-0
https://doi.org/10.1145/3412382.3458271
https://doi.org/10.1109/ACCESS.2019.2958260
https://doi.org/10.31866/2617-796X.4.2.2021.247490
https://doi.org/10.23919/MIPRO52101.2021.9596762
https://doi.org/10.1016/j.apgeog.2011.05.011
https://doi.org/10.1177/20539517221092656
https://doi.org/10.3390/su13147647
https://doi.org/10.1007/978-981-19-8497-6_6
https://doi.org/10.1016/j.scs.2020.102231
https://www.ncbi.nlm.nih.gov/pubmed/32395421


Sensors 2023, 23, 8652 16 of 16

97. Pexyean, T.; Saraubon, K.; Nilsook, P. IoT, AI and Digital Twin For Smart Campus. In Proceedings of the Research, Invention, and
Innovation Congress: Innovative Electricals and Electronics (RI2C), Bangkok, Thailand, 4–5 August 2022; pp. 160–164. [CrossRef]

98. García-Monge, M.; Zalba, B.; Casas, R.; Cano, E.; Guillén-Lambea, S.; López-Mesa, B.; Martínez, I. Is IoT monitoring key to
improve building energy efficiency? Case study of a smart campus in Spain. Energy Build. 2023, 285, 112882. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/RI2C56397.2022.9910286
https://doi.org/10.1016/j.enbuild.2023.112882

	Introduction 
	Related Work 
	Towards an Open Smart Campus Monitoring and Information System 
	Architecture of the Prototype System 
	Low-Cost Sensors for the Use Cases 
	Web Dashboard 

	Low-Cost Sensors Used: Insights and Experiments 
	Challenges and Lessons Learned 
	Conclusions and Future Work 
	References

