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Quality assessment for building footprints data on OpenStreetMap 

 

Abstract: in the past two years several applications of generating 3D buildings from OpenStreetMap 
(OSM) have been made available, for instance, OSM-3D, OSM2World, OSM Building etc. In these 
projects 3D buildings are reconstructed using the building footprints and their attributes information 
which are documented as tags in OSM. Therefore, the quality of 3D buildings relies strongly on the 
quality of building footprints data in OSM. This paper is dedicated to quality assessment of building 

footprints data in OSM for the German City Munich which is one of the most-developed cities in 
OSM. The data is evaluated in terms of completeness, semantic accuracy, position accuracy, and shape 

accuracy by using building footprints in ATKIS (German Authority Topographic-Cartographic 
Information System) as reference data. The process contains three steps: finding correspondence 

between OSM and ATKIS data, calculating parameters of the four quality criterions, and statistical 
analysis. The results show that OSM footprint data in Munich has high completeness and semantic 

accuracy. There is an offset of about four meters in average in terms of position accuracy. With respect 
to shape, OSM building footprints have high similarity to those in ATKIS data. However, some 

architectural details are missing, hence the OSM footprints can be regarded as a simplified version of 
those in ATKIS data.  
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1. Introduction 

In the context of Web 2.0, crowd-sourcing has emerged as a new paradigm that leverages community 
(or crowd) participation to effectively and efficiently accomplish a task traditionally undertaken by a 
few selected individuals. With a global cast of volunteers, OpenstreetMap (OSM) is considered as one 
of the most successful and popular VGI (Volunteered Geographic Information) project. For the current 
state, there are more than 1,1 million registered members (OSM, 2013) who make OSM rapidly 
growing. Sparked by the availability of high resolution imagery from Bing since 2010, there has been 
an increase in building information in OSM, proving that volunteers do not only contribute roads or 
POIs to the database. According to the statistic (the values are derived from our internal OSM 
database which is updated daily) on May 5th, 2013 the amount of buildings in OSM is above 77 
million. In Germany, there are almost 9 million objects with “building=yes” to the same time point. 

Currently, building footprints data in OpenStreetMap (OSM) is mainly used for reconstructing 3D 
buildings. At present there are several projects which generate and visualize 3D buildings from OSM: 
OSM-3D1, OSM Buildings2, Glosm3, OSM2World4, etc. And applications based on these projects i.e. 
3D navigation on mobile devices, web-based visualization, and simulation etc. are getting increased. 
The most of 3D buildings in these projects are rendered as polyhedral, extruded footprints with flat 
roofs, whereby the height information of a number of buildings are directly taken from the attribute of 
building footprints or converted from the number of stories, while the majority of 3D buildings own 
random heights. In OSM-3D, many buildings are modeled in LoD2 (Level of Detail according to 
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CityGML) in case there are indications for their roof types (Goetz and Zipf, 2012). In further, Goetz 
(2013) proposed a conception to generate buildings in LoD3 and LoD4 in CityGML. Besides, 
buildings in different LoDs from other sources can be uploaded via OpenBuildingModels and 
visualized in OSM-3D. But the buildings for uploading have to be adapted with the corresponding 
building footprints in OSM (Uden and Zipf, 2012). 

Since the 3D buildings in aforementioned projects are generated mainly by extruding building 
footprints along the vertical direction, the quality of these buildings strongly relies on the quality of 
building footprints in OSM. The presented work is dedicated to the quality assessment of building 
footprints data in OSM within a test area in Munich (Germany), because on the one hand Munich is 
one of the most representative cities where OSM data is regarded as well developed. On the other hand, 
Munich is the third largest city in Germany with very dense buildings in the downtown. Moreover, the 
geometries of building footprints in Munich reveal large diversity.  

In this work, four criterions are introduced for the quality assessment of building footprint data in 
OSM: (i) completeness, (ii) semantic accuracy, (iii) position accuracy, and (iv) shape accuracy. With 
respect to these four criterions, OSM data are quantitatively assessed by comparing with the reference 
data from the German ATKIS (Amtliches Topographisch-Kartographisches Informationsystem -- 
Authorative Topographic-Cartographic Information System). ATKIS is a common project of the 
Working Committees of the Survey Administrations of the States of the Federal Republic of Germany 
(AdV) (Grünreich, 2000). It contains information on settlements, roads, railways, vegetation, 
waterways, and more. The positional accuracy of building data in ATKIS is     m (Müller and 
Seyfert, 1998). The process of quality assessment is composed of three steps. In the first step, 
correspondences among buildings in two data sets have to be identified. On this base, parameters are 
calculated according to the definitions of the four quality criterions. Then the differences between the 
two data sets are analyzed and visualized. 

The remainder of this paper is structured as follows: Section 2 gives an overview of the related works 
to this paper, Section 3 introduces the criterions of the quality, Section 4 describes the algorithm to 
match building footprints in two data sets, Section 5 firstly gives an overview of the two data set in the 
test area and presents the results of the test area, and Section 6 discusses the results and concludes the 
whole work.  

2. Related works 

2.1 Quality assessment of OSM 

In recent years the geo-data provided by the OSM project has been the foundation of a number of 
scientific publications in a widespread of research fields. In 2008 Haklay conducted a first analysis 
that investigated the data quality of roads in OSM for England (Haklay 2010). This first approach was 
followed by further publications about OSM in Germany (Zielstra & Zipf 2010, Neis et al 2012) and 
France (Girres & Touya 2010) and more detailed investigations about point (Neis et al 2010), line 
(Helbich et al 2012) and polygon (Mooney et al 2010) objects that can be found in the project’s 
database. As mentioned by Hagenauer & Helbich (2012) nearly all “empirical studies indicate that 
urban areas are better mapped” in OSM. This it is not surprising since most urban areas with a higher 
population density inherit larger numbers of contributors, who influenced the quantity and quality of 
the collaboratively crowd sourced OSM objects (Haklay et al 2010, Girres & Touya 2010, Neis et al 
2012).  

In contrast to quality assessment of road networks, few works have been made available for evaluating 
building footprints data in OSM. To the best of the authors’ knowledge, only one detailed study 



investigating buildings in OSM has been published by Kunze (2012) which applied several methods to 
assess the completeness of the building information in OSM in comparison to an administrative 
dataset for two federal states in Germany. As the criterion of quality assessment, the work mainly 
analyzed the area difference of a group of buildings within hexagon/square instead of individual 
correspondence. In further, position accuracy and shape characters are not compared.   

The most common elements of quality assessment used in the abovementioned research works are 
position accuracy and completeness. In further, shape similarity is used to evaluate the polygonal 
objects such as lakes, ponds, and forests (Mooney et al. 2010). In general, the elements for quality 
assessment can be categorized in three types: elements for geographic data bases, elements for data 
modeling and for the spatial data.  Girres & Touya (2010) did a comprehensive quality assessment for 
both data and data models of OSM in France. In their work, eight elements are selected from Kresse 
and Fadaie (2003) and Guptill and Morrison (1995): geometric accuracy, attribute accuracy, semantic 
accuracy, completeness, logical consistency, temporal accuracy, lineage, and usage. For the building 
footprints data in OSM, we take four of them, namely, position accuracy, shape accuracy, semantic 
accuracy, and completeness; because these elements are relevant for the building footprint data while 
other elements are designed for data modeling. Besides, attributes of building footprints are evaluated 
in terms of their completeness. Because of the low completeness (see Section 5), the attribute accuracy 
is not assessed in this work. 

2.2 Map matching 

Map matching is defined as the process to identify correspondent features between two sets of 
geospatial data. It is an essential pre-process for data integration, change detection, data updating, and 
data comparison. The majority of the currently existing approaches for map matching concentrates on 
road network matching. One of the earlier researches developed a statistical matching algorithm by 
incorporating the concept of relational matching in their network-matching algorithm (Walter and 
Fritsch 1999). In the past ten years, most of map matching approaches take features (e.g. distances, 
angles, shapes and semantics) or structure (e.g. sub-graph and proximity graph) into account for the 
similarity measurement to identify the corresponding roads (Samal et al. 2004, Xiong and Sperling 
2004, Volz 2006, Mustière and Devogele 2007, Min et al. 2007, Olteanu & Mustière 2008, Zhang 
2009, Kim et al. 2010, Li and Goodchild 2011). Most recently, Koukoletsos et al. (2012) proposed an 
automated feature-based matching method specifically designed for OSM, based on a multi-stage 
approach that combines geometric and attribute constraints. Yang et al. (2013) proposed a heuristic 
probability relaxation approach to match road networks. Their process starts with an initial 
probabilistic matrix according to the dissimilarities in the shapes and then integrates the relative 
compatibility coefficient of neighboring candidate pairs to iteratively update the initial probabilistic 
matrix until the probabilistic matrix is globally consistent. Then objects correspondences are find out 
on the basis of probabilities.  

In contrast to the road network matching, there are few researches for matching area objects which 
reveal as polygon objects, such as residential region, water body, forest, meadow etc.  The work of 
Gösseln and Sester (2003) could be deployed to match polygonal objects by using an iterative closet 
point (ICP) algorithm that detects corresponding point pairs for two point sets derived from each 
contour of corresponding objects. Huh et al. (2013) developed a method to detect corresponding point 
pair between polygon object pair with a string matching method based on confidence region model of 
a line segment. However, these methods are restricted to low density of polygons to be paired. In case 
that neighboring polygons are located immediately close to each other and similar in shape and size, 
for instance, polygons of building footprints in dense urban area, there will be error matching.  



For this reason, the abovementioned approaches cannot be used to identify corresponding polygons in 
two building footprints data sets. In the presented paper, area overlapping method is introduced 
considering the fact that there is not much displacement between OSM building footprints data and the 
reference data set, namely ATKIS data. 

2.3 Similarity measurement by using turning function 

Turning function or tangent function was introduced by Arkin et al. (1991) for measuring the 
similarity of two polygons. Traditionally, there are two ways to represent a closed polygon: (i) by 
giving a list of vertices or (ii) by giving a list of line segments. Alternatively, a polygon can be 
represented using a list of angle-length pairs, whereby the angle at a vertex is accumulated tangent 
angle at this point while the corresponding length is the normalized accumulated length of the polygon 
sides up to this point. Let C be the polygon on the left of Figure 1. The tangent angle at the starting 
vertex is      . Then    can be calculated as           . The right of Figure 1 shows the 
change of tangent angles (y-axis) along the normalized accumulated length of the polygon sides (x-
axis). From this point of view, the tangent angle can be treated as a function of the normalized 
accumulated length      . It can be called tangent function or turning function. 

 
 

Fig.1. Tangent space representation of polygon 

The turning function       measures the angle of the counter-clockwise tangent as a function of the 
normalized accumulated length  . The cumulative angle increases with left hand turns and decreases 
with right hand turns. This kind of representation is invariant to rotation, because it contains no 
orientation information. Furthermore, it is invariant to scaling, since the normalized length makes it 
independent to the polygon size. 

The similarity of two polygons       can be then defined as the distance between their turning 
functions.  
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In order to avoid the translation of the tangent angle in relation to the other one, the identical point pair 
of the two polygons has to be found out and set as reference point for the calculation of the tangent 
angles. Note that        denotes actually the dissimilarity between   and  . The smaller        is, 
the more similar are the two polygons. In the case   is identical to  , there is         . 

3. The selected elements for quality assessment 

As stated previously, four elements are used for the quality assessment in this work, namely, 
completeness, semantic accuracy, position accuracy, and shape accuracy.  



Completeness – this is a measure of the lack of data, which does not record objects that are expected 
to be found in the database, or excess data that should not be included. Regarding to the data of 
building footprints in OSM, the completeness is defined as the area difference covered by OSM 
buildings and ATKIS buildings. In addition, the completeness of the attributive information is given 
by counting how many buildings in OSM are recorded with attributes such as name, type, height, etc. 
respectively.  

Semantic accuracy – this investigates if buildings in the real world are recorded indeed as building 
objects in OSM on the one hand, on the other hand it measures the percentage of building objects in 
OSM which are indeed buildings in the real world. Furthermore, it denotes the correctness of 
inherency between building geometries and their semantic hierarchies. In this work, the semantic 
accuracy is calculated by analyzing the correspondences among individual buildings in the OSM data 
and reference data. There might be 1:1, 1:n, 1:0, 0:1, n:1, and n:m relations between OSM building 
footprints and those in reference data, as shown in Table 1, whereby footprints in two data sets are 
distinguished in red and blue colors. While footprints in OSM are visualized in red color, footprints in 
reference data are in blue. 

Table 1. Possible relations between building footprints in two data sets 

Relation 1:1 1:0 1:n 

Illustration 

  

 
Relation n:1 0:1 n:m 

Illustration 

  
 

According to the OGC standard of CityGML building models (Groeger et al. 2008), semantic 
hierarchy and geometrical level of details (LoD) relate themselves inherently. Hence, these six kinds 
of relations denote different semantic accuracy as follows: 

 1:1 relation: a building is semantically correctly recorded. 
 1:n relation: a building in OSM is an aggregation of n buildings in the reference data. 

Therefore, the building is recorded at higher level on the semantic hierarchy. 
 1:0 relation: a building in OSM is actually not a building (semantically wrong) in the 

reality. 
 0:1 relation: it is the opposite case of the 1:0 relation. 
 n:1 relation: a building in OSM is a part of a building in the reference data. Therefore, the 

building is recorded at lower level on the semantic hierarchy. 
 n:m relation: the buildings are incorrectly recorded with respect to semantic. 

In a word, a building is correctly recorded in OSM in terms of semantic only when it has a 1:1 relation 
with the reference data. This is also indicated in the definition of “building key” in OSM 
(http://wiki.openstreetmap.org/wiki/Key:building).  

http://wiki.openstreetmap.org/wiki/Key:building


Position accuracy – it evaluates how well the coordinate value of a building in OSM relates to the 
reality on the ground. In the presented work, the corresponding points of a pair of building footprints 
in two data sets are found at first. Then the position accuracy is calculated as the average distance of 
these corresponding points.  

Shape accuracy – this is a measure of similarity of a building footprint in OSM to the shape of the 
building footprint in the reality. In this work, the shape similarity between a pair of footprints in two 
data sets is defined as their turning (tangent) function distance, which is calculated according to (Arkin 
et al., 1991). The starting points for calculating turning function are selected from the corresponding 
points whose distance is the shortest of all the corresponding pairs of points. 

4. Identification of correspondence  

The term of correspondence here has twofold meaning: (i) the relations among building footprints in 
OSM and ATKIS, and (ii) the corresponding turning points which form the shape of building 
footprints. In this section, the correspondences among building footprints in OSM and ATKIS are 
identified at first. For building footprints with 1:1 relation, their corresponding points are found out in 
the second step. 

4.1 Correspondence among building footprints 

The six kinds of relations of correspondence can be identified according to the algorithm as follows:  
Let      be the OSM data set and      be the reference data set. For a building footprint           in 
    , the building footprints in      will be checked if they are intersected with the lines of polygon 
of          . In the case that there is intersection by          , the intersected area is calculated at first 
as            . Since the most of building footprints in OSM have been digitalized according to the 
Bing Map images (http://www.bing.com/maps) (Goetz and Zipf  2012; OSM 2013b, 2013c), there is 
normally offset between footprints in OSM and the reference data due to the distortion caused by 
oblique view of the used sensors. Considering this factor, large buildings in OSM have larger 
percentage of area overlap with their correspondence in the reference data, while small and high 
buildings might have smaller percentage of area overlap with their correspondence. The threshold of 
the judgment depends actually strongly upon the parameters of the Bing map images used for 
digitalization in OSM. In their work, Rutzinger et al. (2009) found out that the correspondence might 
be caused by their neighboring building if the overlapped area is less than 30%. Therefore, the 
threshold of the overlapping is set as 30%.  If  

 𝑟𝑒𝑎𝑜𝑣𝑒𝑟𝑙𝑎𝑝

  n (A   (   tosm i) A   (   tref j))
> 3 %                                                    (2) 

then the footprints            and           are matched. A 1:1 relation is identified when a footprint in 
     can only be matched to one footprint in     , while 0:1 or 1:0 relation is indicated to the case that 
the footprint cannot be matched to those in another data set. If a footprint in      can be matched with 
many footprints in     , there might be 1:n or n:m relation. In this case, the matching results will be 
checked in an inverse way. Namely, for all the n footprints in     , their matched footprints in      
are identified using Eq.2. If all these n footprints are matched to the same footprint in     , it is 1:n 
relation. Otherwise, these n footprints are matched to more than one footprint in     , it is then n:m 
relation.  

4.2 Find identical points of matched building footprints pairs 

For the polygon pairs with 1:1 relation, their corresponding points can be found out efficiently by 
using the following process based on the reality that there is not much difference in shapes, rotation 
and scale between OSM building footprint and real data, because OSM footprints are created by 
digitalizing the high resolution Bing images. The algorithm of finding corresponding points of paired 

http://www.bing.com/maps


footprints is described by taking a pair of building footprints in Figure 1, whereby polygon in red 
stands for building footprint in OSM while polygon in blue stands for building footprint in ATKIS.  

  
 

a. original footprints b. simplified footprints c. MBR of simplified footprints 

  
 

d. Edges of footprints which 
are located on MBR 

e. Edge correspondences 
between MBRs  

f. The corresponding points of 
two footprints 

Fig.2. An example of finding identical points of paired footprints 

As shown in Figure 1a, the footprints from different data sets might be formed at different level of 
detail (LoD) in terms of geometry. This will lead to 1:n correspondence among polygon points. To 
avoid this kind of effect, key points of footprints (Figure 1b) are extracted first of all using douglas-
peucker algorithm (Douglas and Peucker, 1973). Then minimum bounding rectangle (MBR) is 
calculated respectively for the two polygons (as shown in Figure 1c, rectangle in Cyan is MBR for 
OSM footprint and rectangle in Magenta is MBR for ATKIS footprint). In the next step (Figure 1d), 
edges of the building footprint are marked if they are located on edges of its MBR. Then OSM MBR is 
shifted to the center of the ATKIS MBR (Figure 1e), so that edges of these two MBRs can be matched 
if they are they are located (almost) on the same place. Finally, edges of footprints can be matched if 
they are marked to the same edge of MBRs. As shown in Figure 1f, three edges are matched. Their 
ending points are then regarded as identical points of two footprints.  

5. The quality of OSM building footprints in Munich 

The test data set covers 10km x 10km almost for the whole city of Munich. The OSM data is dumped 
from our internal database on the May 10th, 2013. The reference data is ATKIS data in the year of 
2010 provided by the city of Munich. In order to accelerate the process of finding correspondences in 
the two data sets, the whole area is divided into a number of grid cells in a preprocessing phase, so that 
the search area is substantially reduced. A building footprint is indexed to a cell, if its centroid is 
located in the cell. For some buildings closed to or intersected with the border of a cell, their 
correspondent buildings could be indexed to the neighboring cells. Therefore, the search area is set as 
the 3x3 neighborhood of the current cell (where the current footprint is indexed). A sensitivity analysis 
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of the cell size showed that if cell size is smaller than 1.5m, there is not much difference in 
computation time thanks to the high performance of the computer. But, when cell size is larger than 
2m, the computation time becomes also longer, because the number of buildings within a cell is 
increased while increasing the cell size. Finally, 15x15 grid cells are used both for fast computation 
and for better illustration of results.    

5.1 Quantitative assessment of the matching results by using method of area overlap 

Since the analysis in the following sections is based on the results of matching building footprints in 
the two data sets, it is essential to know the quality of the matching results. In order to evaluate the 
matching results quantitatively, building footprints are selected in two data sets by using a rectangular 
boundary in the downtown of Munich. In the evaluation area, there are 1291 building footprints in 
OSM, while there are 2470 buildings in ATKIS. The results using the method of area overlap are 
compared with those from manual matching. Table2 shows the results of the matching using method 
of area overlap. Both the Recall and the Precision are greater than 99%. Hence, the method of area 
overlap achieves good and robust matching.  

Table 2. statistic of the matching results using method of area overlap 
Relation 1:1 1:0 n:1 

True matching  569 344 376 

False matching 3 2 3 

Miss matching 2 0 0 

Recall  99.1% 99.4% 99.2% 

Precision in total 99.2% 

 

5.2 Quality of data completeness 

In terms of area covered by buildings, the city Munich is quite completely mapped, because the total 
area of buildings in OSM data is even slightly larger than that in ATKIS data. Figure 2 shows cell-
based distribution of building areas in both data sets, as well as their differences (ATKIS-OSM) in 
cells, whereby, the area of each cell is calculated as the sum of area of all buildings located in the cell. 
Comparing Figure 2a and 2b, the two distributions are almost same. This verifies the fact that almost 
all the areas covered by buildings have been mapped as buildings in OSM. In most of cells, the 
differences are between 10000 square meters (Figure 2c).  

  
a. ATKIS data b. OSM data 



 

  
        m²        m² 
Legend for Fig.1c Legend for Fig.1a and 

1b 

c. Area difference (ATKIS-OSM)   

Fig.3. Cell-based distribution of building areas and their differences 

The results of completeness quality are shown in Table 3. In contrast to the high completeness in terms 
of covered area, there is limited attributive information in OSM footprints data. Only few buildings are 
recorded with building types, even fewer buildings have attributes of height information and numbers 
of stories. Both data sets contain few attributes of “building name”, because normally only landmarks, 
commercial and public buildings have a name but most of residential buildings do not have a name. In 
this context, it can be stated that more than 50% of buildings which have names are tagged with names.   

Table 3. Completeness of building footprints in OSM 

 Area cover 
(square meter) 

Buildings 
with types 

Buildings 
with name 

Buildings 
with height 

Buildings 
with numbers 

of stories 
ATKIS 18486805.65 100% 5.24%5 100% 100% 
OSM 18707108.84 8.46% 2.82% 0.41% 0.06% 

 

In terms of the amount of buildings, there are 33,911 buildings in ATKIS which cannot be matched to 
the OSM data, while 1,233 buildings in OSM have no correspondent ones in ATKIS. Through a 
manual inspection in the two data sets and Bing Map, the 33,911 buildings can be classified in three 
types (Figure 4): (a) most of them are located inside of yard formed by terraced buildings, they are 
normally occluded by the terraced buildings around them; (b) many smaller building like garages can 
very difficult to be identified on Bing map images, in addition, their roofs have normally low contrast 
to the ground and roads; (c) in some regions, villas and other buildings (garages) are small and mostly 
occluded by trees which make difficulty for the digitalization on Bing Map.  

                                                           
5 The field of building name in AKTIS is 100% filled. However, only about 5.24% buildings in Munich have 
individual names, while most of them have a value of “nameless” for the attribute field.  



 

 
 

a b c 
Fig.4. three types of buildings which have 1:0 relation with OSM data, whereby ATKIS footprints are 
visualized in blue while OSM footprints are visualized in red, the ATKIS buildings which are not 
mapped in OSM are highlighted in cyan, the scale is 1:2500.   

5.3 Semantic accuracy 

As indicated previously, the notion of semantic is defined as what the object is. There are coherent 
relations between semantic hierarchy and geometrical hierarchy. We assume that all the buildings in 
the reference data (ATKIS) are semantically correct. That means that every building in ATKIS is 
corresponded exactly a building in the real world. If a building in OSM is matched only with one 
building in ATKIS, it is semantically correctly mapped. Otherwise, its semantic is not accurate. The 
polygon object should be called “building group”, if it is matched with several buildings in ATKIS. Or, 
it should be called “building part”, in case that it and its neighboring polygons are matched to an 
identical ATKIS building footprint.  

In total, there are 39,364 buildings in the test bed in OSM data, while there are 100,014 buildings in 
ATKIS data. As shown in Table 4, almost all the footprints can be matched with ATKIS data except 
1,233 buildings with 0:1 relation, because the ATKIS data used in this work is three years older than 
the OSM data. These buildings are new constructed in the recent three years, according to our local 
knowledge in Munich. Base on a visual inspection on Bing map image and Google Map, we can state 
that all these buildings are mapped correctly in semantic. That means that all OSM building footprints 
are indeed buildings in the real world. Therefore, the semantic accuracy in a broad sense is 100%.  

There are 21,775 unique correspondent relation (1:1 relation), which means 21,775 buildings are 
correctly recorded in OSM data with respect to semantic. 13,131 buildings are semantically coarsely 
recorded, since they have n:1 relation with building footprints in ATKIS data. 266 buildings are 
semantically more detailed recorded than ATKIS data, as they have 1:n relation. Then the semantic 
accuracy of OSM building footprints is calculated as:           

     
      %. The value means that 

each polygon of the 58.45% polygonal objects (with ‘building = yes’) in OSM is corresponded exactly 
to a building in the real world. Approximately 40% of polygonal objects (with ‘building = yes’) in 
OSM are actually outlines of a group of buildings. According to the definition of semantic in 
CityGML, they are incorrectly recorded in OSM with respect to semantic.  

Table 4. Statistic of relations among building footprints in two data sets (ATKIS:OSM) 
Relation 1:1 1:0 1:n n:1 0:1 
Amount 21,775 33,911 266 13,131 1,233 



 

Figure 5 shows the grid-cell based density map of amount of buildings in ATKIS (Figure 4a) and 
OSM (Figure 4b) respectively, as well as their difference (ATKIS-OSM) (Figure 4c). Obviously, OSM 
data has lower building density than ATKIS data. Most of buildings in high densely constructed urban 
area (red cells in Figure 4a) are semantically wrong recorded (compare Figure 4a and 4c), because 
they are normally difficult to be distinguished as individual buildings from their roofs on Bing map 
images. They are normally digitalized as blocks in OSM. 

  
a. ATKIS data b. data OSM 

 

 
d. legend 

 
Fig.5. Distribution of difference of amount of 

buildings in grid cells c. difference of the two data sets 
 (ATKIS-OSM) 

 

5.4 Position accuracy 

The position accuracy is investigated by calculating the average distance among the corresponding 
points of footprints pair in two data sets. Hence, only the buildings with 1:1 relation are involved in 
the analysis.  

Table 5. Position accuracy of OSM building footprints 

 Maximum 
offset (m) 

Minimum 
offset (m) 

Average 
offset (m) 

Standard 
deviation (m) 

Value 14.80 0.002 4.13 1.71 
 



As shown in Table 5, the average offset of OSM building footprints to ATKIS building footprints is 
4.13m with the standard deviation of 1.71 meter. The largest offset is near 15m, while the smallest 
offset is less than a centimeter. The distribution of the offsets is close to normal distribution with 
     3m and       , as demonstrated in Figure 6.  

 

Fig. 6. Distribution of offsets from OSM building footprints to ATKIS building footprints 

Note that the precision of building footprints data in ATKIS is      , while the precision of Bing 
maps imagery in Munich is estimated as 3 to 4 meters by a visual inspection. Comparing with the 
offset of OSM to ATKIS, the following conclusion can be drawn: the low positional accuracy of OSM 
building footprint data is caused by the limited resolution of Bing map images.  

5.5 Shape accuracy 

Similar to the position accuracy, for shape accuracy only footprints which have 1:1 relation are 
analyzed. The shape accuracy is indicated by the shape similarity between the building footprints pair 
in the two data sets, whereby the dissimilarity of two polygons can be calculated as their turning 
function distance. Figure 7 shows the turning functions of the paired building footprints in the example 
of Section 4.2, the dissimilarity is 1.18 which is calculated using Equation 1. The value is actually the 
difference of areas covered by the turning function, as shown in Figure 7b. 

In fact, Equation 1 is often used to calculate the similarities (dissimilarity) of a set of simplified 
polygons (with different length thresholds) to the original one. A comparison makes sense, only if the 
reference polygon for calculating dissimilarity is identical. A cross comparison with the value of 
similarities is impossible, because the polygon sets are differently. In order to make comparison 
globally, the similarities have to be normalized by setting the rectangularity of a polygon (polygon A 
in Eq.3 and 4) equal to the normalized similarity of its MBR to the polygon, because rectangularity is 
an indicator for polygon shape when comparing with other polygons. 
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The normalized similarity  𝑛      of a polygon B to polygon A can be calculated as: 
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Whereby:     𝑀 𝑅  is the dissimilarity of MBR to footprint A calculated by Eq.1,        is the 
dissimilarity of footprint B to footprint A calculated by Eq.1.  

The principle of the normalization process in Eq.4 can be explained as follows: the ratio of the 
normalized dissimilarity to the dissimilarity calculated using Eq.1 is a constant value. This value can 
be calculated by setting the rectangularity of a polygon equal to the normalized similarity of its MBR 
to the polygon.  

Taking the two footprints in Figure 7a as an example, the normalized similarity can be calculated. The 
dissimilarity of the MBR to the footprint in ATKIS (blue polygon in Figure 7a) is     𝑀 𝑅      . 
The rectangularity of the ATKIS footprint is 0.72, which is treated as normalized similarity of the 
MBR to the ATKIS footprint  𝑛   𝑀 𝑅      .  The dissimilarity of OSM footprint (red polygon 
in Figure 7b) is calculated using Eq.1,            . Then the normalized similarity of the two 
footprints can be obtained as 1-1.18x(1-0.72)/1.47 = 0.78.  

 

 
a. a pair of footprints b. overlap of the turning functions 

Fig. 7. Polygon similarity calculated from their turning function distance 

 

Figure 8 shows the distribution of similarities among corresponding building footprints in OSM and 
ATKIS. Obviously, there is a concentration peak between 0.7 and 1. It means that the most of building 
footprints in OSM have high similarity (more than 70% similar) to their correspondent ones in ATKIS.  

 



 

Fig.8. Distribution of shape similarities of corresponding building footprints 

In order to find out the reason of the dissimilarity of the corresponding building footprints in the two 
data sets, the numbers of points which form building footprints are analyzed. The chart diagram in 
Figure 9 denotes that the most of building footprints in OSM contain up to 10 points less than their 
corresponding ones in the ATKIS. In other words, OSM building footprints are slightly simplified 
version of ATKIS building footprints.  

 

Fig.9. Chart diagram of the differences in terms of number of points 

In Table 6, four typical examples of difference in OSM (red lines) and ATKIS (blue lines) are 
demonstrated. Only in very few cases, footprints in OSM are a little bit complicated than those in 
ATKIS data. For instance, in Table 6a, the fire escape was digitalized as a part of footprint in OSM, 
while it is neglected in ATKIS data, because the footprint in OSM is digitalized according to the 
image of roof in bird view, hence the fire escape cannot be differentiated from the main part of 
building. In the most case (Table 6b, 6c, 6d), footprints in OSM are simplified. The more complicated 
a footprint in reality is, the larger difference there is between OSM and ATKIS. There are three major 
reasons. Firstly, it is difficult to follow the architectural details according to roofs in bird view. 
Secondly, it is limited by the resolution of the Bing map image used during the digitalization. Thirdly, 
many volunteers do not have the patience to digitalize a complicated footprint exactly as it is. They 
normally sketch a simplified polygon with high similarity in terms of shape to the one in the reality.  
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Table 6. Examples of building footprints in OSM and ATKIS 

Scenarios 
Difference of 
point amount 

(OSM:AKTIS) 

Building footprint 
(red: OSM, blue: ATKIS) Image on BingMap 

a 17 

  

b -8 

  

c -120 

  

d -1681 

 
 

 

In addition to the shape similarity, the difference in terms of size is analyzed by comparing the area 
and perimeter between the corresponding building footprints in the two data sets. Because areas and 
perimeters of building footprints vary very much, it is senseless to compare them directly. They have 
to be normalized as follows: 
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The chart diagrams in Figure 10 demonstrate detailed statistics of the difference in terms of the area 
and perimeters. In terms of area of footprint (Fig.10a), 13% buildings in ATKIS are 10% larger than 
those in OSM; 20% buildings in ATKIS are slightly larger (less than 10%) than those in OSM; and 30% 
buildings in ATKIS are slightly smaller (less than 10%) than those in OSM. In terms of perimeter of 
polygon (Fig.10b), more than 75% footprints have less than 10% difference to their corresponding 
ones.  
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Fig.10. Chart diagrams of the differences in terms of area and perimeter  

6. Conclusion and future works 

This paper presents an approach to assess the quality of OSM building footprints data. A case study in 
Munich (Germany) is conducted. The results show that OSM building footprints data has high 
completeness in terms of covered area. Almost all the constructed area in the city is mapped as 
buildings in OSM. However, OSM building footprints data is still lack of attributes such as name, type, 
height etc. There are still many buildings which are not mapped on OSM. These buildings can be 
classified into three types. The buildings of the first type are occluded by their surroundings and hence 
cannot be visualized on the Bing Map images. The buildings of the second type are mostly small and 
low garages whose roofs have similar contrast to ground and roads in their surroundings. The third 
type of these building is referred to villas in forest area. The occlusion by vegetation makes difficulty 
for the identification on Bing Image. On the other hand, there are new findings on OSM. More than 
1200 new constructed buildings are found in OSM which are not recorded in ATKIS data. This shows 
the preponderance of OSM in terms of the high frequency of data updating.  

In a broad sense, the semantic accuracy of OSM building footprint data in Munich is 100%. For the 
specification of using the data for 3D reconstruction, its semantic accuracy is 58.45%, because 
semantic hierarchy is considered.  In terms of position accuracy, the OSM building footprints have 4 
meters offset in average to their corresponding ones in ATKIS. The footprints in OSM are highly 
similar to those in ATKIS in terms of shape. Most of OSM building footprints are almost identical to 
those in ATKIS. There is slight difference. Many buildings in OSM footprints consist of less polygon 
points than ATKIS footprints. Some architectural details are missing, if buildings are complicated in 
structure. In further, attributive information are not very rich.  

The main reason for the abovementioned differences is that OSM footprints were digitalized using the 
base map of Bing images while ATKIS footprints are based on cadastral data. The offset is resulted by 
the distortion of buildings due to oblique aspect of the used sensor, while the fact of missing 
geometrical detail is caused by the limited resolution of Bing map images. The semantic accuracy of 
OSM in dense urban area is rather low, because many buildings in high densely constructed area are 
digitalized together with their neighbors as large blocks, since they cannot be distinguished on the 
Bing map images. But OSM data will be improved quite soon thanks to power of VGI: a huge number 
of volunteers for contribution and high frequency of the data updating.  

So far, regular cell grids are used to reduce the computation cost and for a better overview of 
illustration and visualization of results in the quality assessment. In the future, this will be compared 
with the partitioning based on geographical zones i.e. city center, commercial area, industrial area, 
rural urban area etc. Besides, building footprints on OSM of large region (i.e. Baden-Wuerttemberg) 
containing large cities, middle and small cities, as well as rural area will be evaluated against the 
authority data.  
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