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Abstract 

The emergence and ubiquitary availability of geotechnologies yield an 
explosion of user generated geographical data, utilized for mapping, mod-
eling etc. Using a well mapped German city in OpenStreetMap as an ex-
ample, this research models the positional accuracy of locations of road 
junctions, whereas a statistical comparative approach with high precise 
survey data and commercial Tele Atlas data is conducted. The Open-
StreetMap and Tele Atlas data showed similar spatial deviations and both 
do not coincide with the survey data. Especially, OpenStreetMap sug-
gested spatial heterogeneity in the error distribution, leading to significant 
clusters of high and low positional accuracy.  

1 Introduction 

Profound changes have taken place in Geographic Information Science 
lately (e.g., Goodchild, 2007; Elwood, 2008; Sui, 2008). Until recently, the 
generation, maintenance and distribution of geographic data had been al-
most solely the domain of either official land surveying offices or com-
mercial companies. This was due to the immense costs related to the actual 
surveying and maintenance as well as the efforts involved to share and dis-
tribute spatial data. What we see nowadays is a massive increase of geo-
graphic data collected and shared by volunteers, working in a collaborative 



fashion. The dramatically reduced costs of modern satellite navigation 
handheld devices have enabled people to privately collect geographic data 
with ease of use and in precision levels which had formerly been simply 
beyond reach for the masses. Furthermore, the progress of the internet to 
the “web 2.0” participatory approach has made collaborative efforts to 
generate and share content of various kinds very common. This phenome-
na is widely known as Volunteered Geographic Information (VGI; Good-
child, 2007; Elwood, 2008). In combination with nowadays ubiquitous 
available Open-Source software (e.g., Google Earth) and miscellaneous 
web services, Sui (2008, p. 1) calls this revolutionary development the 
"wikification of GIS", affecting our daily life. 

Among a broad list of initiatives working with VGI, OpenStreetMap 
(OSM) is one of the most promising crowd sourced products. When the 
project started its primary goal was simply to generate a free map of the 
world through volunteered participation. Nevertheless, although the gener-
ation of maps still is the focus of the project, the collected spatial data is 
made publicly available and may thus be used for other purposes as well. 
Additionally, OSM serves as a platform for location based services, in-
cluding routing, geocoding, accessibility analysis and spatial searches. 
OpenRouteService.org (Neis and Zipf, 2008) is an example which has suc-
cessfully implemented a routing service and recently applied in disaster 
management (Neis et al., 2010).  

However, using these data means accepting their limitations - especially 
concerning the data quality. For a comprehensive overview of quality as-
pects we refer to Van Oort (2006) whereas in this paper we will focus on a 
single aspect, namely positional accuracy. It denotes the coordinate devia-
tion of a spatial object compared to its real location (Haklay, 2010). The 
positional accuracy of the collected data is affected by different influences, 
e.g. the technological bias like the accuracy of the GPS-receiver used, dif-
ferent data acquisition techniques (e.g., digitizing) or subjective knowledge 
about the data gathering process. In order to assess the usability of VGI in 
varying cases of application the positional accuracy of the data to be used 
has thus to be thoroughly evaluated, because missing and imprecise data 
effect model calibrations and in the worst case leads to false conclusions. 

The main purpose of this research is the statistical analysis of the posi-
tional accuracy of three different data sources, namely OSM, Tele Atlas 
(TA) and survey data (SD), for a (well mapped) medium size German city. 
For this purpose, we have to make the crucial assumption that our official 
SD possess the highest accuracy, based on precise surveying techniques 
(e.g., triangulation). Therefore, SD serve as the reference data, to which 
the other data sets are relatively evaluated. In this context it must be men-
tioned that, because routing being its main application, the primarily inten-



tion of the TA dataset is topological correctness and positional accuracy is 
just a second but of course essential issue. Thus, comparisons can be, but 
must not be, biased.  

2 Related Work 

Research concerning different kinds of accuracies (e.g., positional or to-
pological) of VGI has not gained much interest yet. A first descriptive at-
tempt was conducted by Haklay (2010) who analyzed the positional accu-
racy of OSM compared to commercial data (OS Meridian 2) for the United 
Kingdom. He analyzed the percentage of overlaps between both data ven-
dors within a buffer distance, as proposed by Goodchild and Hunter 
(1997). The methodology has been adapted by Zielstra and Zipf (2010) for 
Germany, comparing the completeness of OSM to TA. Both studies con-
cluded that OSM is a viable alternative data source, but emphasize that 
there are some limitations in usage concerning its completeness in rural 
areas.  

Ludwig et al. (2010) alluded to a related issue, criticizing the lack of 
specific attributes, like maximum speed limits and street names. Neis et al. 
(2010) compared the length of the mapped street network of commercial 
data and OSM for the year 2010. They stated that there are nearly no dif-
ferences in the overall street length between both data sets, but found a dif-
ference of 40 percent of street segments capable for routing applications. 
Similarly, Schmitz et al. (2008) analyzed the routing capabilities of Ope-
nRouteService, based on OSM. Because of topological errors (e.g., uncon-
nected street segments) within the street graph, 3-5 percent of all routing 
requests were not executable. Chen (2010) deals with topology correctness 
and completeness of digital maps through the integration of different user-
generated (OSM) and commercial data sources (NavTeq, TA), comparing 
the correspondence of road crossings. His findings, among others, clarify 
that NavTeq and TA have a higher topological similarity than TA and 
OSM. Furthermore, urban areas show a higher similarity than rural areas. 

Over et al. (in press) extend the range of application of OSM data to the 
third dimension. In combination with free elevation data (SRTM), the use-
fulness for 3D visualizations (e.g., buildings) is shown. Further research 
has addressed VGI for the purpose of geocoding (Amelunxen, 2010). He 
concludes that the positional accuracy of geocoding results based on OSM 
data can be equal to or even better than the accuracy provided by the 
commercial geocoding service offered by Google Maps. Nevertheless, 
these accuracy levels could only be achieved when OSM data were availa-



ble on house number level which, at the time of the research, had been the 
case for only about 5 percent of the sample requests within the study area, 
but is increasing fast.  

This brief literature review highlights, mostly in a descriptive fashion, 
some limitations as well as the potential of OSM data. Further, it clarifies 
the need of statistical analysis of the positional accuracy of OSM com-
pared to proprietary geographical data, like SD and TA. The present re-
search tackles this issue. 

3 Methodology 

3.1 Data Processing 

Datasets containing linestrings of road segments from all three sources 
are semantically aligned and loaded into a PostgreSQL/PostGIS spatially 
enabled relational database. As a first preprocessing step for each dataset, 
separate road segments sharing the same street name are merged in order 
to provide a single linestring for either street. The junctions within the da-
tasets are then extracted by determining all point coordinates where exact-
ly two distinct linestrings cross each other. This approach admittedly rules 
out junctions where three or more streets cross but has been preferred for 
the sake of clarity. 

The concatenated names of the streets crossing each other serve as an 
identifier for given junction. These identifiers are then used to select and 
spatially compare corresponding junctions among the datasets. As the 
identifier has to be unique, this approach additionally requires to rule out 
those cases where two streets cross each other more than once. Figure 1 il-
lustrates this approach. 



 
Fig. 1. Extraction and comparison of road junctions. 

The deviation of the junction point coordinates from the corresponding 
points in the defined reference data set is then used as a measure of posi-
tional accuracy. Based on this, a scatter diagram of positional errors is in-
vestigated to inspect their spatial distribution and in order to detect poten-
tial systematic errors. 

3.2 Geometrically Evaluation of the Distortion 

To get deeper insights of this geometrically distortion of the point pat-
terns a bidimensional regression (Tobler, 1994; Friedman and Kohler, 
2003) is calculated. This method allows assessing the transformation pa-
rameters between two (plain) maps and point patterns, respectively. Con-
trary to Tobler’s (1965) remark, that bidimensional regression could be 
particularly useful for geographical analysis, it is rarely applied till these 
days. Primary, spatial positional accuracies in cognitive maps are analyzed 
(Lloyd, 1989). Other scope of applications are concerned with the lineage 
of historical maps (Symington et al., 2002), rubbersheeting as well as cor-
rections of remote sensing images (Tobler, 1994).  

The present research uses bidimensional regression models as descrip-
tive statistics to determine the correspondence between OSM, TA, and SD. 
In Euclidean bidimensional regression the vectors of the regression equa-
tion are extended to be two-dimensional Cartesian coordinates pairs (xi, yi; 
ui, vi), where xi, yi are the estimated coordinates from the of OSM and TA 
data, respectively, and ui, vi are the associated dependent reference coordi-
nates of the surveying data. A scaling, translation and rotation parameter 



reflect how the estimated point pattern must be transformed to fit back into 
the reference point pattern. Thus, it is possible to quantify the geometrical 
relationship between two point patterns. The resulting bidimensional re-
gression equation has following structural form: 

 

 (1) 

 
where the parameters a1 and a2 correspond to the ordinary least squares 

(OLS) intercept term and they carry out the translation. The bij values con-
duct the scaling and rotation and can be understood as the slope coefficient 
in OLS regression. ej and fj are the errors.  

First, the magnitude of the horizontal (a1) and vertical (a2) translation 
between the reference pattern and the independent pattern is estimated, de-
termining a least squares solution. A positive value of a1 indicates a west-
to-east shift and a negative value indicates an east-to-west shift. Likewise 
positive values of a2 are in accordance with a south-to-north shift and vice 
versa. Second, b1 and b2 are used to derive a scale parameter ϕ and angle 
parameter θ. Former causes the magnitude of contraction or expansion, 
whereas a ϕ value < 1 indicates a contraction and a ϕ value > 1 means an 
expansion relative to the reference pattern. The direction of the rotation to 
get the best fit is determined by the angle parameter θ. A positive θ value 
indicates a counterclockwise rotation and a negative θ a clockwise one 
(Lloyd, 1989; Friedman & Kohler, 2003). An overall “quality criterion” is 
the Distortion Index (DI) introduced by Waterman and Gordon (1984) and 
discussed in Friedman and Kohler (2003). This index “can be thought of as 
a standardized measure of relative error” (Lloyd, 1989, p. 110) and has a 
range between 0 and 100, where a lower value means less distortion.  

3.3 Local Spatial Association of positional errors 

Because bidimensional regression is a global statistic, it seems neces-
sary to explore spatial heterogeneity in the positional errors as well. There-
fore, an appealing method, among others, to detect local patterns of spatial 
association is the G*-statistic (Getis and Ord, 1992). The G*-statistic 
yields the proportion of the weighted sum of the variable within a distance 
d from location i as a proportion of the variable aggregated over the entire 
study region: 



 (2) 

where xj correspond to the value of the observation at j, wij(d) is the ij 
element of the spatial weight matrix and n is the number of observations. 
As a result spatial clusters of high and low values can be evaluated. In our 
case, a cluster of high values (z-scores) means a clustering of high posi-
tional errors and low values (z-scores) are related to an accumulation of 
low errors, always compared to SD. Significance is tested via a randomiza-
tion approach.  

 

4 Results 

The preprocessing algorithm was able to extract 121 identical road junc-
tions within our three datasets. The resulting point pattern is visualized in 
Figure 2. It can be seen that the junctions are spatially bounded to urban 
areas. Taking the above stated hypothesis into account, that the SD serve 
as a spatially precise reference dataset, the spatial deviation between SD 
and OSM and TA, respectively, was evaluated.  

 

 
Fig. 2. Study site and identical road junctions (point signatures).  

The mean deviation error is approximately one meter smaller in the 
OSM dataset, compared to TA (Table 1). A two sample Welch's t-test con-



firms significant differences between both mean values (t = -3.037, p = 
0.003). The Fligner-Killeen-test is used to proof homogeneity of both va-
riances. The result clearly rejects the null hypotheses (FK = 57.644, p < 
0.001) and there are significant differences between the OSM and TA error 
variances. Moreover, OSM scatters more around the mean than TA, but 
comprising the directional scattering around the true position of the road 
junctions, as shown in Figure 3, it is noticeable that TA error clearly scat-
ters more westward around the "true" position, than OSM does. The two 
varying mean centers of each point pattern support this finding and refer to 
a possible systematically variation.  

Table 1. Descriptive statistics of the error deviation (in meters) between reference 
data and OSM and TA 

 OSM TA 
Min. 0,220 2,759 
Max. 18,694 13,607 
Mean 5,229 6,145 
Std. dev. 3,037 1,300 

 

 
Fig. 3. Directional scattering around the "true" position of the road junctions. 
Darker points represents TA junctions, brighter ones OSM junctions, the cross 
marks the true position, and the rectangles show the spatial means of the error dis-
tributions 

Hence, the geometrically distortion of the OSM and TA point pattern 
are compared to the one of SD on a global level, using the bidimensional 
regression framework. Thus, the OSM and TA pattern are regressed on the 
SD reference pattern, leading to the estimated parameters shown in Table 



2. These parameters indicate how the OSM and TA pattern, respectively, 
must be transformed to get the SD pattern. Overall the OSM and TA pat-
tern have the same geometrical distortion, hence having the same parame-
ter signs. Both patterns are shifted east-to-west as well as south-to-north. 
Furthermore, the contraction or expansion parameter is negligible, because 
differences occur only after the five decimal place. θ refers to a clockwise 
rotation of the OSM and TA pattern, whereas OSM is marginally more ro-
tated. The DI suggests that the relative error is slightly lower and thus the 
TA pattern corresponds more to the reference pattern. Nevertheless, the 
gaining of knowledge positional accuracy is not overwhelming and hence-
forth local statistics are used. 

Table 2. Estimated Parameters (rounded) of the bidimensional regression (SD de-
pendent variable, OSM or TA independent variable) 

 a1 a2 b1 b2 ϕ θ DI 
OSM -35,844 0,690 1,000 -0,000 1,000 -0,011 0,178 
TA -2,561 19,351 1,000 -0,000 1,000 -0,009 0,095 

 
Mapping the positional errors (Fig. 4) gives a first indication of spatial 

heterogeneity, but this impression needs some statistical validation. There-
fore, to explore areas with high and low accuracy, the G*-statistic is calcu-
lated. We applied the zone of indifference option for conceptualization of 
the spatial relationships between the entities, which is a combination of the 
inverse distance and fixed distance band model, leading to a neighborhood 
search threshold of 967 meters. Points with high z-scores and p-values be-
low 0.05 indicate spatial clustering of high positional errors (approx. 
beyond +/- 2 standard deviations) and vice versa. Values between +/- 2 
standard deviations suggest no significant clustering.  

 

   
Fig. 4. Absolute deviation in meters between OSM and SA (left) and TA and SA 
(middle). Absolute value of deviation (in meters) between OSM and TA (right). 



  
Fig. 5. Results of the G*-statistics of OSM (left) and TA (right) in standard devia-
tions. Values beyond +/- 2 standard deviations have significant p-values (p<0.05).  

Both maps in Figure 5 show some significant clusters of low values, 
corresponding to clusters with high positional accuracy. In the case of 
OSM (Fig. 5 left), this cluster is primarily situated in the center of the map. 
27 out of 121 observations have a significant negative z-score (p < 0.05). 
The opposite is valid for TA (Fig. 5 right), whereas these areas are located 
in the northern part of the map (7 significant observations). Positive values 
beyond 2 standard deviations are interpreted as badly mapped areas. In this 
regard, OSM shows some limitation, because such areas are present in the 
northern as well as southern part of the study site, whereas TA is not af-
fected by limited position accuracy, compared to SA. Comparing the 
amount of such observations confirms this, OSM has 10 times more signif-
icantly imprecise mapped observations (OSM: 21, p < 0.05; TA: 2, p < 
0.1). In general, TA map gives a more homogeneous impression of the po-
sition accuracy error.  

5 Conclusions 

The present paper is devoted to the comparison of positional accuracy of 
volunteered geographic information and proprietary geospatial data, using 
the case study of an well-mapped German city. On the one hand bidimen-
sional regression analysis is applied to evaluate the global geometries of 
the patterns and on the other hand clusters of high and low precision are 
detected.  



The results showed that both data sets, OSM and TA, have a highly po-
sitional accuracy and may be used for small and medium scale mapping 
applications. However, the bidimensional regression estimates referred to 
highest correlation between OSM/TA and their true position, but TA data 
had less distortion than OSM. The G*-statistic resulted in some clusters 
with high a low positional accuracy, interpretable as spatial heterogeneity. 
Furthermore, the OSM areas of high accuracy are primarily located in the 
highly populated urban centers, leading to the conclusion that these areas 
are subject to a higher validation rate and consequently, errors are cor-
rected more quickly than in rural areas. These findings are similar to those 
reported by Chen (2010), where urban areas have a higher (topological) 
accuracy. Hence, future comparisons between urban and rural areas seems 
fruitful, because rural areas are mapped with significantly less complete-
ness (Zielstra and Zipf, 2010) but the continuously tremendous growth of 
OSM data may shrink this disparity. OSM as well as TA showed similar 
spatial distortion, which raises the question whether the SA are affected by 
inaccuracy.  

Finally, future research is needed to get confidence, especially other ref-
erence datasets and more case studies must be analyzed and other metho-
dological approaches must be tested.  
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